Successful Help Desk Process Narrative
(To accompany PowerPoint presentation)

Copyright Vicky Gerik, ITS Director of Baylor University and Melinda Sanson, Training and Support Specialist, Baylor University.

This work is the intellectual property of the authors. Permission is granted for this material to be shared for non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is by permission of the author. To disseminate otherwise or to republish requires written permission from the author.

Our presentation will focus on the work flow process we developed at Baylor when a client’s troubleshooting problem could not be solved at the first tier level. By fully utilizing the features and enhancements of our software, we were able to give our services providers the automated tools and resources they wanted. The end result is a successful workflow and a satisfied customer.

In order to understand how the workflow process functions at the second tier, we must first look at the successful elements that must be established at the first tier of support.

Sufficiently staffed and technically skilled Help Desk Consultants

You must provide a sufficient number of Help Desk consultants and make sure that they are technically skilled. Although this may seem very obvious to a manager, how do you know when you have it?

You must first determine the percentage of calls you want to solve and the turnaround time. Once this is set, then you can determine the number of staff it will take to meet your goals. We had a very ambitious goal at Baylor, which was 70% solution with a 4-hour turnaround.

To meet our goal, we determined that it required five full time staff. I took staff positions that we might have devoted to installs and troubleshooting and placed them in the HD center. About 75% of their time is spent providing phone service. They also provide onsite visits for clients receiving new computers, printers or OS upgrades. In addition, they provide instructor-led training as well. In other words, we used the “ounce of prevention” theory.

Help Desk attendant available when needed

Our Help Desk services were extended to students this fall so our hours of services were increased to meet their demands. We have an after hours call center that operates from 5:00 until midnight Sunday through Thursday and until 10 PM on Fridays. The after hours procedure is seamless to the clients. This group also uses the same call flow policy as we follow during normal working hours.
Good phone system

Easy menu options
Option to leave a message
Call queuing system
Provide music (optional)
Adequate equipment for the HD Consultants

One method or central location for storing the information about the inquiry or ticket

Whether you are dealing with a telephone call to the Help Line, a question about a web page source of information, self service questions input by the client, or email to your Help Desk, the information about the queries need to be stored in one location.

The Heat System from FrontRange was our vendor of choice. Whatever system you choose for your client tracking, it needs to meet the following criteria.

For the Client

Provides Self-service option with accurate solutions
Fast and reliable
Provide status tracking
Provide customer feedback

For the Service Providers

Identify tasks by service group
Follow a customized workflow
Provide the ability to automate notification
Provide quick access to all pertinent client information
Provide secure remote access
Provide the ability to easily reassign, track, and escalate tickets

For the Supervisor, Manager, and CIO

Provide automated escalation and alert notification
Provide easy access to status information and reports
Provide enhanced communication
Organize data by service groups
Increase your service level efficiency without additional staff

How we did it….. We installed Heat in November 2000, but lacked the adequate personnel resources to implement all features. At that time, it was mainly used by the
first tier support group only. Other groups in ITS used their own homegrown database system or paper lists for tracking their calls.

The other main obstacle that I had to overcome was the fact that I no longer had an experienced programmer to assist me. My programmer was reassigned to another group as part of the ITS realignment. So, I decided to take a new approach and call Front Range to see if they could recommend a consulting group. They suggested Enterprise Computer Solutions, Inc. in Dallas. It was the best phone call I ever made.

ECS sent a representative to meet with all the ITS support groups and do an evaluation of our existing situation. The visit took two days at a cost of $3,500. Within three weeks, they gave us a general summary of their findings, as well as recommendations to get our project off the ground.

Since I had the funding to continue, my next step was to sell the idea to our CIO, which was pretty easy to do. He approved it as an official ITS project. It was placed in our Project Management system, Project Office, so that the tasks, timeline, and progress could be tracked.

At the next center-wide staff meeting, our CIO further supported our project by announcing that all sections of ITS would move to Heat for tracking their client support calls. This was a major key in making this project such a success.

Within one quarter, the building blocks of our support infrastructure were put into place beginning with formalizing the call flow policies to be followed by all ITS support staff. That is why we referred to the call flow as a policy and not just a "procedure."

During this time period, ECS configured the iHeat or web access, which meant working closely with our Network security administrator to meet Baylor’s network security standards. We now had the remote access we needed for all the service providers, including our after hours staff, which is provided by a group off campus.

Next the link to the Human Resources and Student Information systems load was added. This includes information about the caller, whether they are faculty, staff, student (on-campus or off-campus). As soon as the Bear ID is typed, vital information about the caller is immediately available. The information is updated on a weekly basis.

Then, the link to our LanDesk system was implemented. This includes crucial pieces of information about the caller’s equipment including its configuration, memory, processor speed, OS version and IP address, etc. This information is also updated on a weekly basis.

Next, the BPAM or business process automation module server was configured. This system is the middleware application between the Heat system and our email software. Numerous business rules were written to handle the customized needs for each service group.
WebCenter, a web front end access that provides real-time information to the ITS leadership, as well as the service providers, was last piece of software implemented.

The last building block was a Project manager--Someone to assume the role as the liaison between ECS and ITS. We selected Melinda Sanson for several reasons. She already had had some working knowledge of the Heat system in a hospital environment and had worked at the ITS Help Desk and knew first-hand some of the roadblocks that they faced.

As the infrastructure was being built, Melinda worked along side ECS and with the service providers so they could fully utilized the system.

Our Heat Systems supports approximately 17,000 faculty (including retired faculty), staff and students. On the average we have approximately 200 open tickets. There are 170 technicians identified within the system, along with 22 different departmental call types.

The total cost for consulting from ECS was approximately $36,500. They spent approximately 24 days on campus working with Melinda and completed their programming of the system and had us operational with all the enhanced features we requested within six months.

Additional funding was needed to add the Webcenter product, Heat Plus and self-service server, and additional licenses for both Heat and iHeat. We use three servers to run the Heat System: a 6450 for the primary software application and the Webcenter, another 1650 for the Business Process Automation Module, and a Dell 1650 for the self-service server and Heat Plus knowledge application. The data from the Heat application is stored on a shared SQL database server.