Teaching, Technology, and Tenure: How Are They Valued?

EDUCAUSE Conference
Atlanta, Georgia

“The Impact of Technology-Based Projects in Performance and Promotion and/or Tenure Reviews in Liberal Arts Colleges”

Dorita F. Bolger, Associate Professor/Associate Librarian
Richard L. Sprow, Professor of English

Copyright [Dorita F. Bolger and Richard L. Sprow] [2002]. This work is the intellectual property of the authors. Permission is granted for this material to be shared for non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is by permission of the author. To disseminate otherwise or to republish requires written permission from the authors.
“The Impact of Technology-Based Projects in Performance and Promotion and/or Tenure Reviews in Liberal Arts Colleges”

The 2001 *U.S. News & World Report* identifies 218 liberal arts colleges and defines liberal arts colleges as those higher education institutions as schools who emphasize undergraduate education. *U.S. News* has based their groupings on the Carnegie Foundation classifications. The Carnegie Foundation, in 2000, redefined a liberal arts school as one that awards at least half of its degrees in the liberal arts – the benchmark previously was 40 percent.

In an effort to assess the value currently being placed on technology-based projects in performance and/or promotion and tenure decisions in liberal arts colleges, we mailed surveys to the chief academic officer of 45 small liberal arts colleges. These colleges were selected because they were a.) ranked among the top fifty national liberal arts colleges in the 2001 *U.S. News & World Report* survey, b.) ranked among the 2001 *Most Wired Small Colleges*, and/or c.) one of the comparison colleges for our employer, Westminster College (PA). Westminster College executive administrative staff selected the comparison colleges for multiple purposes of improving faculty salary, faculty course load, and student faculty ratio.

The survey attempted to answer questions such as: Are technology-based projects valued in the promotion and tenure decision at your institution? Are they valued in teaching, scholarship, and or service? How are they valued? What are the qualities that make these activities scholarly? The survey applied to both faculty and librarians.

Dorita F. Bolger, Associate Professor/Associate Librarian (dbolger@westminster.edu)
Richard L. Sprow, Professor of English (rsprow@westminster.edu)
Survey Subjects

Survey Pool: 45 liberal arts colleges

- **25 National Liberal Arts & Wired Small Colleges**
 - 16 Top 50 National & Wired colleges
 - 7 National Tier 2, 3, and 4
 - 2 Wired Small Liberal Arts Colleges
 - 1 Regional, Tier 2
 - 1 Regional, Tier 3

- **20 Comparison Colleges**
 - 18 National, Tier 2 and 3
 - 2 Regional
 - 1 Tier 1
 - 1 Tier 2

Survey Respondents: 20 liberal arts colleges

- **10 National Liberal Arts & Wired Small Colleges**
 - 8 Top 50 National & Wired Small Colleges
 - 1 National, Tier 2
 - 1 Regional, Tier 3

- **10 Comparison Colleges**
 - 4 National, Tier 2
 - 6 National, Tier 3
General Findings

◊ 15 of the 20 respondents **support** the position that technology-based projects deserve **more credibility** in the review process than is currently the case

 o **Only 1** of the 15 respondents includes **criteria** specifically for technology-based projects in its **review document**

◊ 19 of the 20 respondents **currently value** technology-based projects **in performance reviews** at their institutions

 o **Only 2** of the 19 respondents include **criteria** specifically for technology-based projects in their **review documents**

 o **75%** of the respondents support both **more credibility** and **currently value** technology-based projects in the review

 • **4** of the 5 colleges (all national/wired colleges) that do **not support increased credibility**, still **use it in their reviews**;
 • **only 1** college (national/wired) supports **increased credibility** but **does not use it in the review**

◊ **No** institutions support the position that technology-based projects should have **greater value** than print projects but **40%** accord technology-based projects value **equal to a print project** and **60%** accord technology-based projects value **less than a print project**

◊ 19 of the 20 respondents **include** technology-based projects **in the review process**

 o 42% accord technology-based projects value equal to a print project
 o 58% accord technology-based projects value less than a print project
Reasons for Creating Technology-Based Projects
(Ranked order)

Findings

Faculty Specific
- 100% to improve instruction
- 75% opportunities for scholarship
- 70% for departmental/college need
- 60% for professional recognition
- 50% for need in the discipline
- 20% to serve external constituencies

Librarian Specific
- 80% to improve instruction
- 75% for library/college need
- 65% for need in discipline/profession
- 45% to serve external constituencies
- 40% for professional recognition
- 15% opportunity for scholarship

Observation
- The most significant difference between classroom faculty and librarians reasons for creating technology-based projects is in the area of scholarship. 75% indicated technology-based projects are opportunities for scholarship for faculty while only 15% said it was an opportunity for scholarship for librarians.
Librarian Profile

Findings

- 25% (5 out of 20) of the respondents have **faculty status and rank**
 - all undergo same review process as classroom faculty
 - all are eligible to apply for research funds
 - all are required to have scholarly/creative activity for promotion and/or tenure

- 35% (7 out of 20) have **faculty status only**
 - 86% (6 out of 7) undergo a different review process, with different criteria, than classroom faculty
 - 30% (2 out of 7) are eligible to apply for research funds
 - Only 1 college requires scholarly/creative activity for promotion
Elements of Technology-Based Projects
(Ranked order)

Findings

◊ 70% - Have an impact on, significance for, communities, those affected directly by the effort or the discipline itself

◊ 65% - Demonstrate high level of discipline-rated experience

◊ 60% - Be of value to the local, national, and/or international community
 Be able to be documented
 Be able to be peer reviewed

◊ 30% - Break new ground or be innovative

◊ 25% - Be able to be replicated or elaborated

Observations

❖ Although 90% of the polled institutions do not have written statements on technology-based projects in their review material, the above responses indicate on which elements a project would be judged.

❖ The most important element of technology-based projects is that they have an impact on various communities, whereas the more highly valued print scholarship need have no impact on any community.

❖ In comparison to the established view of print projects, technology-based projects must be practical. Only 30% of the respondents value technology-based projects for breaking new ground or being innovative
Projects Being Conceptualized, Created, and Disseminated by Faculty
(Ranked order)

Findings

Internet-based material
◊ 100% email discussant participant
◊ 95% creating content-rich web pages
 electronic syllabi
◊ 80% incorporation of hyper-text and hyper-media in web material
◊ 70% use of multi-media authoring software to develop documents that contain audio, visual, & movies
◊ 65% electronic reserves
 self-paced learning modules
 collaborative work on a list serve
◊ 60% electronic indexes or databases
◊ 40% moderator/editor of listserv or bulletin board
◊ 35% digital archiving project
 electronic conferencing
◊ 30% electronic books
 creation of online exams to be taken remotely and securely

Electronic Journals
◊ 65% articles in electronic journals
◊ 10% electronic journals
 incorporation of hypertext & hypermedia into electronic journals

Software
◊ 90% courseware (blackboard, etc.)
◊ 80% CD-ROM projects
 videotape
◊ 65% presentation software
◊ 50% audiotape
◊ 35% CAD packages
◊ 25% digital archiving project
Projects Being Conceptualized, Created, and Disseminated by Librarians
(Ranked order)

Findings

Internet-based material
◊ 75% email discussant participant
◊ 70% electronic reserves
◊ 65% content-rich web pages
◊ 60% electronic indexes or databases
◊ 55% digital archiving projects
◊ 35% incorporation of hypertext hypermedia into web material
 collaborative work on a listserv
◊ 25% electronic books
 self-paced learning modules
 electronic syllabi
 moderator/editor listserv or electronic bulletin board
◊ 20% use of multimedia authoring software to develop documents that contain a-v, or movies
◊ 15% electronic conferencing
◊ 5% creation of online exams

Electronic Journals
◊ 40% electronic journals
◊ 30% articles in electronic journals
◊ 10% incorporation of hypertext hypermedia into electronic journals

Software
◊ 40% digital archiving
◊ 35% presentation software
◊ 25% courseware
 CD-ROM projects
 Videotape
 audiotape
◊ 5% CAD project
Reasons for Creating Technology-Based Projects - Faculty

(Number of responses out of 20 colleges)

<table>
<thead>
<tr>
<th>Project</th>
<th>Improve Instruction</th>
<th>Dept/College Need</th>
<th>External Constituencies</th>
<th>Professional Recognition</th>
<th>Scholarship</th>
<th>Disciplinary Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>electronic reserves</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>electronic books</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>content-rich web pages</td>
<td>19</td>
<td>14</td>
<td>4</td>
<td>12</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>digital archiving project</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Electronic indexes/databases</td>
<td>12</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>self-paced modules</td>
<td>13</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>online exams</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Electronic syllabi</td>
<td>19</td>
<td>14</td>
<td>4</td>
<td>11</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>hypertext in web</td>
<td>16</td>
<td>12</td>
<td>3</td>
<td>10</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>multimedia authoring</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Electronic conferencing</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>collaborate listserv</td>
<td>13</td>
<td>11</td>
<td>4</td>
<td>9</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>moderate/edit listserv or bulletin board</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>email discussant</td>
<td>20</td>
<td>14</td>
<td>4</td>
<td>12</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>electronic journals</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>articles in electronic jrnls</td>
<td>13</td>
<td>11</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>hypertext into elec. Jnls.</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>course ware</td>
<td>18</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Create Digital archiving project software</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>presentation software</td>
<td>13</td>
<td>10</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>CAD</td>
<td>16</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>16</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>videotape</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>audio tape</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Observations

- In every single category for every project, the most significant reason for creating technology-based projects is to “improve instruction.” The second most important reason for creating one is “departmental/need” and “scholarship.” The third tier reasons for creating a project are “professional recognition” and “Disciplinary need.” The final reason for creating a project is to serve “external constituency.”

- It appears that technology-based projects are created to improve instruction, which is no surprise. However, the 2nd most important reason for creating technology-based projects is attributed to departmental need and opportunity for scholarship. The question becomes, how does this perceived goal of scholarship relate to the actual reward and/or significance in the evaluation process?

- Does the least valued reason for creating a project – to serve external constituencies – indicate or suggest that technology-based projects are not relevant beyond the local campus and therefore have no impact on promotion and/or promotion and tenure?
Reasons for Creating Technology-Based Projects -

Librarians

(Number of responses out of 20 colleges)

<table>
<thead>
<tr>
<th>Project</th>
<th>Imp. Instruction</th>
<th>Dept/College Need</th>
<th>External Const.</th>
<th>Prof. Recog.</th>
<th>Scholarship</th>
<th>Disc. Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>electronic reserves</td>
<td>12</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>electronic books</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>content-rich web pages</td>
<td>11</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>digital archiving project</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Electronic indexes/databases</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>self-paced modules</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>online exams</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Electronic syllabi</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>hypertext in web</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>multimedia authoring</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Electronic conferencing</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>collaborate listserv</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>moderate/edit listserv or bulletin board</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>email discussant</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>electronic journals</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>articles in electronic jrnls</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>hypertext into elec. Jnls.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>course ware</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Create Digital archiving project software</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>presentation software</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>CAD</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>videotape</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>audio tape</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Observations

- Among all reasons for creating technology-based projects, the top reasons are about evenly distributed (50-50) between improving instruction and departmental/college need. The second most important reason for creating technology-based projects is disciplinary need. The third tier reasons for creating technology-based projects are to meet the needs of external constituencies and professional recognition. The least valued reason for creating technology-based projects is for the purpose of scholarship.

- For librarians, as with faculty, technology-based projects are primarily created to improve instruction and meet departmental need. However, next in importance for faculty is an opportunity for scholarship, while for librarians the next most important reason for creating one is to meet library profession needs. The institutions value technology-based projects as an opportunity for scholarship least for librarians; such a valuation is in alignment with a pool in which 75% of the librarians lack faculty status and rank.
Components Used to Evaluate the Merit of Technology-Based Projects
(Ranked order)

Findings
◊ 75% peer review
◊ 65% the project itself
◊ 30% a project summary or project description

Observation
❖ Priorities for determining the merit of technology-based projects continue to support the traditional criteria as currently used in the evaluation of print scholarship.
Criteria Used to Determine the Merit of Technology-Based Projects
(Ranked order)

Findings

◊ 65% uniqueness/creativity
◊ 50% local recognition
 practical utility for meeting needs
◊ 45% scholarly contribution
◊ 30% national/international recognition
 development of ideas
◊ 25% promote/enhance library services
 departmental services
 institutional mission
◊ 20% user friendliness
◊ 10% evidence of effective functioning
◊ 5% usefulness

Observation

❖ The ranking of criteria is consistent with the traditional criteria as currently used in the evaluation of print scholarship.
Technology-Based Projects and Review Categories - Teaching
(Ranked order)

Findings

◊ 70% electronic syllabi
◊ 55% content-rich web pages and course ware
◊ 50% hypertext and hypermedia into web
◊ 45% self-paced learning modules
◊ 40% online exams
 multimedia authoring software
 CD-ROM
 Videotape
◊ 35% electronic reserves
◊ 30% email discussant participant
◊ 25% digital archiving project (creation of software)
◊ 20% electronic indexes or databases
 collaborative work on listserv
 audiotape
◊ 15% e-books
 electronic conferencing
 moderator/editor of listserv or electronic bulletin board
 CAD
◊ 10% digital archiving (use of pre-existing software in a project)
◊ 5% electronic journals
 articles in electronic journals
 incorporation of hypertext and hypermedia in electronic journals

Observation

❖ Every technology-based project on the list was used to satisfy the teaching component of the promotion or tenure and promotion process by at least one institution. Those projects used in the review process by 50% or more of the institutions are electronic syllabi, content-rich web pages, course ware, incorporation of hypertext and hypermedia into web material. All clearly support teaching.
Technology-Based Projects and Review Categories - Scholarship
(Ranked order)

Findings

◊ 60% articles in electronic journals
◊ 55% electronic indices or databases
◊ 45% electronic books
◊ 40% CD-ROM
◊ 35% videotape
◊ 30% hypertext and hypermedia in web
 multimedia authoring software
 email discussant participant
 electronic journals
 presentation software
◊ 25% content-rich web pages
 digital archiving (use of pre-existing software in a project)
 collaborative work on listserv
 incorporation of hypertext and hypermedia into electronic journals
 digital archiving project (creation of software)
 audiotape
◊ 20% electronic conferencing
 moderator/editor of listserv or electronic bulletin board
 CAD
◊ 5% electronic reserves

Observation

❖ Four types of technology-based projects do not count toward scholarship: self-paced learning modules, online exams, electronic syllabi, and courseware. The obvious explanation is that these projects support "teaching." The top ranking projects that count toward scholarship (articles in electronic journals, electronic indices/databases, and electronic books) are consistent with the traditional criteria used in the evaluation of print scholarship.
Technology-Based Projects and Review Categories - Service
(Ranked order)

Findings

◊ 30% moderator/editor of list serve
e-mail discussant participant
◊ 25% digital archiving project (use of pre-existing software in a project)
collaborative work on list serv
◊ 20% content-rich web pages
digital archiving project (creation of software)
CD-ROM
Videotape
◊ 15% electronic conferencing
presentation software
◊ 10% electronic reserves
electronic indexes or databases
multimedia authoring software
electronic journals
audiotape
◊ 5% self-paced learning modules
hypertext and hypermedia in web
courseware
CAD

Observation

❖ The following projects do not count toward service: electronic books, online exams, electronic syllabi, articles in electronic journals, and incorporation of hypertext hypermedia into electronic journals. This pattern is consistent with the projects which are accepted as teaching and scholarship. There are markedly fewer total projects counted for service. Such a finding is logical because many of the projects clearly support teaching or service. However, what counts as service is also consistent and logical as projects which are obviously a service function.
CONCLUSIONS

1. Technology-based projects deserve more credibility in the review process.

2. Technology-based projects are currently being valued in the promotion and/or tenure review process; however, they are valued equal to or less than traditional print products.

3. Although technology-based products are factored into the review process, college review documents continue to lack definition, criteria, and value statements about them.

4. The components and criteria used to evaluate the merit of technology-based products is consistent with the traditional criteria currently used in the evaluation of print scholarship.

5. Technology-based projects, when classified, consistently and logically fall into the teaching, scholarship, and service categories used in the traditional review process.

6. For faculty and librarians alike, the primary reason for creating technology-based projects is to improve instruction.

7. Technology-based projects are valued as scholarship for faculty, but not for librarians.

8. While print scholarship traditionally values innovation and cutting-edge research, technology-based projects seem to be valued more for their impact on specified communities and for their practicality.
RECOMMENDATIONS

1. Incorporate definitions, criteria, and value about technology-based projects in institutional review documents and base them on the statements generated by the various professional associations.

2. Value technology-based projects, at least equally to print scholarship, when the technology-based project meets the established criteria.

3. Value technology-based projects as scholarship for librarians, regardless of whether librarians have faculty status and rank.

September 2002